Manufacturing companies of today are under pressure to run their production most efficiently in order to sustain their competitiveness. Manufacturing systems usually have bottlenecks that impede their performance, and finding the causes of these constraints, or even identifying their locations, is not a straightforward task. SCORE (Simulation-based COnstraint REmoval) is a promising method for detecting and ranking bottlenecks of production systems, that utilizes simulation-based multi-objective optimization (SMO). However, formulating a real-world, large-scale industrial bottleneck analysis problem into a SMO problem using the SCORE-method manually include tedious and error-prone tasks that may prohibit manufacturing companies to benefit from it. This paper presents how the greater part of the manual tasks can be automated by introducing a new, generic way of defining improvements of production systems and illustrates how the simplified application of SCORE can assist manufacturing companies in identifying their production constraints.
展开▼